
VU Research Portal

Law-Abiding & Integrity on the Internet: a Case for Agents

Brazier, F.M.; Oskamp, A.; Prins, J.M.; Schellekens, M.H.M.; Wijngaards, N.J.E.

published in
Artificial Intelligence and Law
2004

DOI (link to publisher)
10.1007/s10506-004-6250-z

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Brazier, F. M., Oskamp, A., Prins, J. M., Schellekens, M. H. M., & Wijngaards, N. J. E. (2004). Law-Abiding &
Integrity on the Internet: a Case for Agents. Artificial Intelligence and Law, 12(1-2), 5-37.
https://doi.org/10.1007/s10506-004-6250-z

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 13. Mar. 2024

https://doi.org/10.1007/s10506-004-6250-z
https://research.vu.nl/en/publications/949b1f99-07cd-4ea0-984b-fa14fbb39006
https://doi.org/10.1007/s10506-004-6250-z

- 1 -

Law-Abiding & Integrity on the Internet: a Case for Agents1

Frances Brazier1, Anja Oskamp2, Corien Prins3, Maurice Schellekens3 and Niek Wijngaards1

1 Intelligent Interactive Distributed Systems, Faculty of Sciences
Vrije Universiteit Amsterdam, de Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands

Email: {FMT.Brazier, NJE.Wijngaards}@few.vu.nl
Phone: +31 - 20 - 444 7737, 7634; Fax: +31 - 20 - 444 7653

2 Computer and Law Institute, Faculty of Law
Vrije Universiteit Amsterdam, de Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands

Email: a.oskamp@rechten.vu.nl
Phone: +31 - 20 - 444 6215; Fax: +31 - 20 - 444 6230

3 TILT, Tilburg Institute for Law, Technology and Society, Faculty of Law
Tilburg University, P.O. Box 90153, 5000 LE, Tilburg, The Netherlands

Email: {J.E.J.Prins, M.H.M.Schellekens}@uvt.nl
Phone: +31 - 13 - 466 - 8044; Fax: +31 - 13 - 466 8149

Abstract

Software agents extend the current, information-based Internet to include autonomous mobile
processing. In most countries such processes, i.e. software agents are, however, without an
explicit legal status. Many of the legal implications of their actions (e.g. gathering
information, negotiating terms, performing transactions) are not well understood. One
important characteristic of mobile software agents is that they roam the Internet: they often
run on agent platforms of others. There often is no pre-existing relation between the ’owner’ of
a running agent’s process and the owner of the agent platform on which an agent process runs.
When conflicts arise, the position of the agent platform owner is not clear: is he or she
allowed to slow down the process or possibly remove it from the system? Can the interests of
the user of the agent be protected? This article explores legal and technical perspectives in
protecting the integrity and availability of software agents and agent platforms.

1. Introduction

New technologies on the Internet have their impact on society and thus on the law. In the field
of AI and Law the aims have always been to develop new intelligent tools to support legal
practice but also to construct underlying theories to ensure that these tools can be applied in a
way that is in accordance with the relevant legal regime. Agent technology is an example of a
new technology that may have great impact on the construction of applications for the legal
domain, especially now so many legal sources and legal services are appearing on the
Internet. Software agents may, for instance, be of great help keeping track of and analysing
new legal publications, e.g. E-government, where software agents may help to perform legal
services. E-commerce is another domain with relevant examples (e.g., Bradshaw, 1997; Luck
et al., 2003).

At the same time the potential application of these new technologies raises many questions.
The Internet society is not restricted to geographical, legal, or corporate boundaries. The
physical distribution of services, processes, and data, is no longer necessarily the same as the
perceived location Agent technology is a key enabling technology in this Internet society;
software agents are autonomous and pro-active, can autonomously (e.g., Castelfranchi, 2001)

1 This paper is an extended and fully revised version of (Brazier, Kubbe, Oskamp and Wijngaards, 2002a) and
(Brazier, Oskamp, Schellekens and Wijngaards, 2003a).

- 2 -

roam the Internet, perform transactions, and gather information. Wide-area distributed (agent)
systems are no longer fiction, they are a fact. For example, peer-to-peer networks in use today
(e.g. Napster, KaZaa, Jabber, Gnutella, …) demonstrate the impact of large-scale distributed
(file-sharing) applications on society. Regarding agents, the Agentland portal
(http://www.agentland.com) is an example of a website offering free and paid-for agent
applications for various tasks, including information retrieval and web-site management.
Existing forums such as W3C (http://www.w3c.org/) and FIPA (http://www.fipa.org/)
propose standardisation to pave the way for the development of agent applications. The
Agentlink Roadmap (Luck et al., 2003) states the expectation that custom-made, specific,
closed agent-based systems currently being deployed will become less constrained, e.g. by
coping with more dynamic environments, in five to ten years time, after which more open
systems will be deployed.

A number of issues need to be clarified before software agents and related technology can
be used on a large (world-wide) scale in open systems such as the Internet. In the context of
current thinking on the relationship between technology and law, the legal status of software
agents is unclear. This article focuses on the legal status of software agents in closed systems
as a current testing ground for potential solutions, identifying and exploring challenges for
fully open systems.

When considering the possible legal challenges and problems in more detail, we note that
multiple prominent legal concerns arise in relation to the use of agents, such as: liability,
security, privacy and contractual implications. These and other legal challenges facing users
and producers of agent technology as well as regulators are compounded by the fact that
intelligent agents are marked out by various unprecedented features. Traditional legal
paradigms do not suffice (Klink and Prins, 2002). The well-known paradigms have all
developed along the lines of intervention by natural or legal persons within local bounds of
space and time. However, these confines have lost their meaning in a world that is
characterized by a society in which autonomous and anonymous communication and
interaction by machines is flourishing.

The complex issue of agent technology thus introduces a variety of challenges and
opportunities that span the domains of agent systems applications on the one hand and law on
the other hand. Within the individual domains of technology and law, the implications are
known to some extent. For example, in the context of e-commerce: issues such as liability and
contract formation (Karnow, 1996; Stuurman and Wijnands, 2001; Geurts, 2002). Yet
experiences, needs and requirements from novel applications (such as mobile agents) have not
yet been dealt with from a legal perspective. Moreover, what is missing is a thorough and
overall evaluation of the relation between technical perspectives and interests on the one hand
and legal perspectives and interests on the other hand. The interaction between agent
development and legal dimensions is mostly unknown, yet technical progress warrants the
need for legal clarification, and legal implications may require resolution of technical issues.

Agent technology comprises not only software agents, but also agent platforms: supportive
middleware which enables the functioning of software agents (see Section 2.2 for examples
and explanations). Both software agents and agent platforms are discussed in this article
because of their legal and technical interdepencies. Section 2 sketches how software agents
and agent platforms may operate, and what risks there are related to integrity and availability.
Section 3 explores various aspects of the protection of the integrity of software agents’
processes and agent platforms. It investigates what legal requirements exist regarding
integrity and whether the law mandates protection of the integrity of agent platforms and
running software agents' processes, and if so how and when. It also considers the rights and
obligations of agent platform owners. Technical measures are explored that can be taken to

- 3 -

protect the integrity of both the software agent and the agent platform and which counter
measures are possible. The relevant legal questions regarding availability and integrity are
dealt with from the perspective of Dutch law, a statutory legal system, in contrast to the
Anglosaxian/American caselaw system. Section 4 suggests several legal recommendations for
the use of software agents and agent platforms. Section 5 concludes this article with a
discussion.

2. Software Agents & Agent Platforms

Agents are used in a wide variety of applications (e.g., Jennings and Wooldridge, 1998):
process control, manufacturing, air traffic control, information management, electronic
commerce, business process management, patient monitoring, health care, games, and
interactive theatre and cinema. The role of agent technology is expected to grow in the
foreseeable future (Luck et al., 2003). Currently, software agents are used in restricted
applications involving no outside parties or agents, with the expectation that in five years time
agents may be involved in cross-boundary systems, leading to the use of agents in fully open
systems in ten years time. It is important to note that agent technology involves agents and
agent platforms. Agents are usually envisioned as ’active entities’, while agent platforms
constitute a technical (software) infrastructure to support agents. Their responsibilities differ:
agents pursue goals for user applications, while agent platforms need to manage agents and
their needs for resources.

A number of different parties are involved in the use of software agents and agent
platforms, including users, owners, distributors, developers, and designers. Although
distinguishing (legal) parties is important for, e.g., litigation (e.g., Biasiotti et al., 2003), it is
not of particular importance for the purpose of this article. When in this article the ’owner’ of
an running agent’s process is mentioned, the word ’owner’ denotes the person or organisation
who, other than a system administrator, has control over the running agent. Often this may be
the person in whose interest the agent runs. The word ’owner’ is thus not used in its legal
meaning when used with respect to agents or agent processes (e.g., see Yip and Cunningham,
2003). Here, for practical purposes we assume the user of a software agent to be the owner,
whereby the owner of an agent platform is represented by system administrators.

An example is used throughout this article to facilitate the explanation of agents and agent
platforms, involving a marketplace in which books can be bought and sold. The marketplace
is created so that multiple companies can cooperate to provide a single place for buyers to buy
books. For ease of explanation, participants are either sellers or buyers, but not both. Each
seller has his or her own booth to display books, advertisements, engage in conversation and
negotiation with potential buyers, etc. A seller may represent a specific company and/or a
theme: thriller, fantasy, computer, law, comics, etc. A company may use multiple seller
agents. A central cashier is present for buyers to buy books for the agreed price and
conditions, possibly including book transportation arrangements. Floor plans and catalogues
are present so that buyers can navigate the marketplace and browse titles to find books to their
liking.

This section is structured as follows. Section 2.1 describes agents, both as individuals and
as an aggregate (a multi-agent system). Section 2.2 explains agent platforms, and the services
they provide to agents. Section 2.3 identifies a number of risks involved with the use of agents
and agent platforms.

2.1 What is an Agent?

An important contribution of agent technology is the following metaphor: the ’agent’ concept
facilitates modelling inherently distributed processes and systems as autonomous pro-active

- 4 -

processes (e.g., Luck et al., 2003). A number of definitions of software agents are provided in
Artificial Intelligence literature (e.g., Shoham, 1993; Wooldridge and Jennings, 1995; Nwana,
1996; Bradshaw, 1997; Jennings, 2000) in which a common element is that agents are
autonomous and pro-active and are able to:
• communicate with other agents, e.g. to co-operate in a joint-endeavours, negotiate on

prices for goods and services, or collaboratively form decisions;
• interact with their environment, e.g. with data-objects and web-services;
and possibly to
• migrate to specific agent platforms (see below in Section 2.2.3), e.g. to bring the

computations by an agent close to large repositories of data, thereby preventing
unnecessary data-transmission and facilitating secure access.

Pro-activeness and autonomy are related to an agent’s ability to reason about its own
processes, goals and plans. The ability to communicate and co-operate with other agents and
to interact with the outside world often relies on an agent’s ability to acquire and maintain its
own knowledge of the world and other agents. .

Agents often work for a human user, directly or indirectly via other agents. In some
definitions, humans are also considered to be ’agents’, thereby unifying and anthromorphising
the notion of agency. A rationale for this modelling perspective is that each pro-active
autonomous (and possibly intelligent) entity is modelled as an agent and takes part in the
multi-agent system by means of the defined communication and interaction protocols. A
’human’ agent is often ’implemented’ as a software program with graphical (web)interfaces,
through which a human can participate in a multi-agent system. In the context of this article,
an agent is assumed to be a software agent, not a human. When humans wish to communicate
with an agent, they can employ, e.g., facilities such as e-mail or instant messaging.

In the example of the marketplace, participants can be modelled as agents: each participant
is autonomous, and can start, continue and/or stop a transaction with other participants. A
participant is able to interact with the environment, e.g. to consult a floor plan to locate
specific booths at the marketplace. The participant may move to a booth to inspect and trade
in locally available books, an action which was not possible from another location outside of
the booth. The only way to influence a participant is by communication or interacting in the
environment. (Note that a move to a booth may constitute a move to another agent platform,
depending on the design of the underlying infrastructure (see Section 2.2.3).)

An agent A (web) serviceAn object

buyer seller sellerbuyer buyercatalog catalogcash
register

Figure 1. Agents, objects and web-services in the example Marketplace.

Agent communication languages (ACLs) describe “speech acts” in the form of message
exchanges, e.g. KQML (Finin et al., 1997) and FIPA-ACL (Dale and Mamdani, 2001). The
semantics of a message in an ACL is generally left open (e.g., Dale and Mamdani, 2001) to
the extent that it is associated with an ontology, e.g. the Semantic Web effort (Berners-Lee et
al., 2001; Ding et al., 2002) develops ontologies by which machines may understand
information and overcome an interoperability problem (Jennings, 2000). An ontology is,
generally stated, a description of the concepts and relations that can be used to represent (part
of) a domain.

- 5 -

In the example marketplace, languages, protocols and ontologies can be standardised by
the marketplace organisation, forcing compliance of seller agents and buyer agents and
facilitating inter-agent communication and object/service interaction. Figure 2 depicts
interaction (dashed lines) and communication (straight lines) in a simple protocol for buying a
book. A buyer agent can interact with a book-catalogue object (Figure 2.a) to select a book to
be bought. The buyer agent then asks the associated seller agent for the book’s price (Figure
2.b). The seller agent, in turn, replies with information necessary to complete a book sale
(Figure 2.c). Finally, the buyer agent interacts with the cash register to buy the book. This
rather simple protocol does not include more realistic aspects such as negotiation on price and
delivery conditions and avoids issues such as security, privacy and copyright (e.g., Bing,
2003).

buyer seller catalogcash
register

(a)

buyer seller catalogcash
register

(b)

buyer seller catalogcash
register

(c)

buyer seller catalogcash
register

(d)

Figure 2. Interaction and communication involved in a simple protocol for buying a book.

In the example marketplace, a book-catalogue is modelled as an object: it can be inspected
by agents, but the catalogue itself is not actively contacting agents. The floor plan in the
example, however, is capable of alerting buyers to potentially interesting nearby sellers, based
on the current position of a buyer. The floor plan is considered a service: an active element
supporting the functioning of agents without itself being an agent, as the floor plan cannot buy
or sell books. The cash register’s functionality is a web-service, one that can e.g. initiate credit
card payments for the associated book-selling companies. Note that this distinction between
agents, objects, and (web)services is conceptual; when programming a software agent often
object-oriented programming languages are used (Java is a well-known example). A software
agent does not differ in this respect from other software on a computer: when it ’runs’, it is
considered to be a process (Tanenbaum and Steen, 2002) with code (programming
instructions), data (comparable to a human’ s ‘long-term memory’) and execution state
(comparable to a human’ s ‘working memory’).

2.2 What is an Agent Platform?

2 3 4

The Internet

1Agent platform

Company /
User

Marketplace Company Home Company

buyer seller sellerbuyer buyercatalog catalogcash
register

- 6 -

Figure 3. Agent platforms support agents, objects and web-services; in turn agent platforms are supported by
single or multiple computers (in case of a ’distributed’ agent platform).

An agent is hosted by an agent platform. An agent platform is middleware: software which
runs on computer(s) and provides a uniform environment to other software. Figure 3
illustrates this notion: the same agents, objects and web-service depicted in figure 1 are
presented together with the underlying agent platforms and computers. In the marketplace
example, one organisation may provide computers to host the marketplace application,
including cash register, agent-registration, etc., while other companies may provide one or
more computers to host their own seller-agents and book-catalogues. Companies can thus
easily update their seller agents and catalogues. A user can host his or her own buyer agent on
his or her own home computer, or have a buyer agent migrate to the marketplace’s computers.

Middleware in general, and agent platforms in specific, provide the means to hide
differences in underlying computers (and, e.g., their operating systems such as Unix,
Windows XP, Mac OS X, Linux, Palm OS, etc.) by offering a more standardised interface to
agents (and their developers). Examples of agent platforms include FIPA (Fipa, 2001), Jade
(Bellifemine et al., 2001), ZEUS (Nwana et al., 1998), and AOS (Wijngaards et al., 2002).
The FIPA interface is currently being standardised as a ’de facto’ standard in the form of
prevalent Jade implementations (Agentcities, 2003). However, interoperability between
different types of agent platforms is not simple, even with the FIPA / Jade grassroots
standardisation. A number of issues still need to be addressed, e.g. concerning inter-agent-
platform security, migration, communication, interoperability, agent identity management,
etc.

When discussing agent platforms, a number of aspects need to be addressed. First of all, an
agent platform typically manages agents (Section 2.2.1), provides communication and
interaction services (Section 2.2.2) and offers migration services (Section 2.2.3). Finally,
deployment of an agent platform in the real world needs to be addressed (Section 2.2.4).

2.2.1 Managing Agents

An agent platform manages the allocation of resources to agents, e.g. such as which agent
’runs’ on which computer (if a choice exists) with what speed and which services (e.g., http-
access to remote web-sites, or access to a local database). In addition to hosting agents, an
agent platform creates agents, deletes agents, searches for agents, etc. An agent platform
provides mechanisms for security, including access control for migrating agents as well as
defence against possible malicious, or faulty, agents. In the example marketplace, seller
agents commonly reside on companies’ agent platforms, and buyer agents are more dynamic;
they can enter the marketplace, and possibly migrate to and from a company’s agent platform.
This implies that the marketplace agent platform needs to manage migration of buyer agents
together with access policies for buyer agents entering the marketplace, manage address
information of buyer and seller agents (for inter-agent communication purposes), providing
needed resources to buyer agents, etc.

Policies for access control, i.e. deciding whether an agent is to be hosted by a specific
agent platform, are usually based on the agent’s identity, its owner, or other characteristics. In
addition, information on reputation or gossip, and observations of the (expected) load of the
agent platform itself may influence these policies. Trust, a multi-facetted concept (McKinght
and Chervany, 2001), is often based on reputation and gossip information. Trust plays an
important role in agent systems, involving trust between and among agents and agent
platforms (Wong and Sycara, 1999). Access control for agents may involve the exchange of
credentials; for example, the Trustbuilder system (Winslett et al., 2002) is used to negotiate
which resources agents may access, based on both specific agent’ s and Trustbuilder systems'

- 7 -

policies and credentials. In the example marketplace, access policies for entering the
marketplace for the first time can be based on a buyer agent’s credentials including producer
of the agent, and the human user’s reputation for payment and rebates. In addition, the
marketplace may use experiences of another marketplace, e.g. in which CD’s are sold, about
trustworthiness and (mis)behaviour of users.

Additional policies are needed, for example to govern agent creation: can an agent create
another agent or clone itself. Issues concerning ownership, identification and authentication as
well as liability still need to be addressed.

Anonymity is another issue: are anonymous agents allowed? Complete anonymity may
hamper communication facilities (no addressee or recipient are known, bulletin-board
communication approaches may be an alternative option) and pseudonyms may be confusing
when agents migrate to other agent platforms where different pseudonyms are used. The
subject of anonymity and software agents is discussed in more detail elsewhere in this special
issue, based on (Brazier et al., 2003a). In the example marketplace, anonymity is not an
option: buyer and seller agents in the marketplace need to be identifiable for communication,
management and migration purposes. However, the identity of the human user is only needed
(if at all) when completing a transaction at the cashier service. A user can choose to reuse
their buyer agent, or have new buyer agents (with different identities) enter the marketplace.

2.2.2 Agent Communication & Environment Interaction

An agent platform provides services to agents, including communication, interaction, and
directory services. Communication services may differ in their ’quality of service’. For
example, Email, as used by humans, is an unreliable service as messages may get lost or
delivered late, because a guarantee of delivery is missing. Similarly, communication protocols
for agents may have different costs (in terms of bandwidth, number of messages sent, time
taken, etc.) and characteristics such as reliability and security.

In a similar vein, interaction protocols are defined with which agents can interact with
objects and (web-)services. Protocols may include message-based protocols and streaming-
protocols (e.g., a continuous flow of information from a sensor or audio station).
Standardisation is currently not widely researched. In the example marketplace, a service
offered to buyer agents may consist of an information stream of advertisements (similar to
stock-tickers, e.g. via RSS) for a buyer agent. Likewise, seller agents may wish to have a
continuous update of which buyer agents are currently interested in specific issues, e.g., by
monitoring the behaviour of buyer agents browsing through book catalogues.

Agents and services can be found with directory services. Directory services couple names
of agents and services to characteristics, such as abilities to perform certain tasks. In the
example marketplace, yellow pages can be used to find seller agents with specific abilities,
such as a seller agent specialised in literature on agent technology and law. A directory
service can be used to provide such yellow page functionality. Note that directory services in
large distributed systems in which many information updates occur, is currently a topic of
research (Tanenbaum and Steen, 2002).

Agent platforms need to extend communication services to agents on other agent
platforms, as communication is usually an inter-agent-platform service. For this to work,
agent platforms also need inter-agent-platform protocols and languages. FIPA provides some
standardisation (Fipa, 2001) but additional standardisation is required. Whether agents can
interact with objects and services which are hosted on different agent platforms, usually
depends on the configuration of both the local agent platform and remote agent platforms. If
no remote access is allowed, and agent may migrate to the other agent platform, or have other
agents migrate (as ’helper’ agents). In the example marketplace, the agent platforms involved

- 8 -

in supporting agents participating in the marketplace facilitate inter-agent communication.
This is similar to humans using cell-phones: cell-phone usage is (usually) transparent with
respect to the specific telecommunication companies involved as they resolve the underlying
connections for relaying speech.

2.2.3 Agent Migration

Agents, objects and services may be distributed over a large number of agent platforms.
Agents may migrate from one agent platform to another: they are mobile. A common reason
for mobility involves the quality of access to resources such as large volumes of data and
security constraints (Brazier et al., 2002b). An agent may gain faster access to data when an
agent resides on the same agent platform as the data, instead of a remote agent platform with
restricted (inter)network capacity (e.g., a modem connection offers less bandwidth than an
Ethernet or DSL connection).

In the example marketplace, a compelling reason for buyer agents to migrate to the
marketplace’s agent platform is security: the migration policy involves stringent checks of,
e.g., owner reputation, agent software reliability, and protocol compatibility. Agents which
successfully entered the marketplace, can then more easily migrate to a company’s agent
platform, as all stringent checks have been performed earlier. A reason to migrate to a
company’s agent platform may be to do a full text search on books for sale at that company. A
full text search is an expensive operation, especially if the buyer’s agent contains specific
evaluation criteria or algorithms to assess a book’s usefulness. By migrating this buyer’s agent
to the company’s agent platform, digitally encoded books need not leave the company’s
computers and network, thereby preventing possible misappropriation and reducing the
amount of data shared over the Internet.

AP-1

Marketplace

buyercash
register

AP-u

User’s
mobile
phone

(a)

AP-1 AP-u

(b)

AP-1 AP-u

(e)

AP-1 AP-u

(d)

AP-1 AP-u

(c)

Figure 3. Example of migrating an agent; see the text for an explanation.

Figure 3 depicts a number of the steps involved in migrating an agent. Suppose a user has
acquired a buyer agent on his or her mobile phone (Figure 3.a). This buyer agent is instructed
to enter the book marketplace and to buy a specific book. The user’s mobile phone contains a
(small) agent platform, which starts negotiations with the marketplace’s agent platform
(Figure 3.b). These negotiations may include checking of credentials and authentication steps.
When all is in order, the user’s agent platform suspends the user’s buyer agent, and places the
transportable format of the agent in an ’agent container’: this basically is a data-structure (such

- 9 -

as a ZIP-file) containing relevant files for an agent and its associated process(es) (Figure 3.c).
The buyer’s agent is currently not functioning; policies may be provided, e.g., to store
messages for this agent until the agent is ’re-activated’. The user’s agent platform transports
the suspended buyer agent’s container to the marketplace’s agent platform (Figure 3.d). The
marketplace’s agent platform is responsible for resuming (’awakening’) the buyer agent on the
basis of information in its agent container. The buyer agent is now hosted by the marketplace
agent platform and resumes its functioning (Figure 3.e). Both the user’s agent platform and the
marketplace’s agent platform have to make certain that the buyer agent is also registered as
being hosted at the marketplace’s agent platform, e.g. with respect to routing communication
messages. After completion of the migration protocol it is not any longer necessary to
maintain a connection between the marketplace’s agent platform and the user’s agent platform.

Migrating an agent entails migrating its process involving code, data and execution state. A
number of options exist (Fugetta et al., 1998). In one approach, an agent may not need to be
aware of migration, e.g., to store important information in its agent container. The agent may
continue with its functioning and it typically does not need to be ’restarted’ at its destination.
This type of migration, transparent to the agent, is termed strong mobility; the agent’ s code,
data and execution state are migrated. Strong mobility as found in NOMADS (Suri et al.,
2000), Ara (Peine and Stolpmann, 1997), and D’ Agents (Gray et al., 2001), requires that an
entire agent, including its execution state and other details, is saved before an agent is
migrated to a new location: this requires homogeneity of operating systems, agent platforms
and programming languages.

The opposite is weak mobility, in which only an agent’ s code and data are migrated, but its
execution state is discarded. In this alternative, an agent is always 'restarted' at its destination,
and it needs to store important information from its execution state in its data to be able to
resume its functioning from the moment it migrated. Many agent systems support weak
mobility (like Ajanta (Tripathi et al., 1999) and Aglets (Lange et al., 1997)). Most of the agent
systems are implemented using the Java programming language and the Java Virtual Machine
(JVM), which provides object serialization as a basic mechanism to store execution state
information as data.

2.2.4 Deployment

Security is of key importance in deployed agent systems. Agents need to be protected during
migration and execution. Agent platforms, however, also need to be protected from malicious
and malfunctioning agents. Current research on secure agent systems concentrates mainly on
protecting agent platforms (and the computers on which they run) against hostile mobile
agents. Only very few systems also provide facilities for protecting mobile agents against
hostile agent platforms (Karnik and Tripathi, 2001). The example marketplace spans agent
platforms from multiple companies and possible users. Their underlying computers, operating
systems and other resources may be heterogeneous, yet security and reliability needs to be
assured otherwise companies and users will not participate. Section 2.3 outlines possible risks
of the use of agents and agent platforms.

An agent platform may support agents from different multi-agent systems, although this is
currently not commonplace. Existing agent platforms such as ZEUS (Nwana et al., 1998),
NOMADS (Suri et al., 2000), Sensible Agents (Barber et al., 2000), RETSINA (Sycara et al.,
2003), JADE (Bellifemine et al., 2001), OAA (Martin et al., 1999), MASIF (Milojicic et al.,
1998) and Ajanta (Tripathi et al., 1999) are approaches in which tools for developing agents
are combined with agent platforms. Basic facilities such as communication, creation and
deletion of agents are provided by most agent platforms; mobility is often limited.
AgentScape (Wijngaards et al., 2002) is a mobile agent platform designed to support large
numbers of heterogeneous agents and locations, securely and reliably. Aspects such as

- 10 -

interoperability, efficiency and performance, but also security, are part of the current research
to which the OpenNet project (formerly the AgentCities (2003) project) contributes by
providing an overarching infrastructure for testing agent systems. An open collection of FIPA
compliant agent platforms is created on which multiple multi-agent systems can reside. An
agent platform thus needs to manage multiple concerns, e.g. from local agents (and their
users) as well as unknown external agents (and their users).

Successful deployment of agent systems requires scalability: very large numbers of agents,
services and resources require adequate support by agent platforms. Large-scale agent
systems are often heterogeneous systems: heterogeneous with respect to the computer
hardware (e.g., Sun SPARC, Intel x86/i64), the computer operating system supported (e.g.,
Solaris, Linux, Windows XP), the agent programming languages support (e.g., C++, Java,
Python, and Prolog) and the communication infrastructure (e.g., available qualities of
service). An agent platform should provide a homogeneous, transparent interface to agents. A
major technological challenge is to build scalable, secure, and fault tolerant agent platforms,
that support multiple distributed applications, heterogeneity, and multiple qualities of services
(e.g., De Wilde et al., 1999; Turner and Jennings, 2000; Brazier et al., 2001).

2.3 What are Known Risks?

Application of any technology has consequences, some of which are foreseen and wanted,
others may be unwanted. Agent technology is not different in this respect: its application may
involve certain risks. Below, first risks of using agents are described, then risks of using agent
platforms. Section 3 introduces two relevant cases from Dutch and American law to highlight
that these risks are real, and can already happen. The first case (XS4All versus ABFAB) is
about safeguarding users and maintaining system integrity, while the second case (eBay, Inc.
v. Bidders’ Edge, Inc.) is about access policies.

2.3.1 Risks when Using Agents

As mentioned, using agents is not without risk. Agents are expected to function
’autonomously’, without a user’s constant supervision. Agents run on an agent platform,
communicate with multiple agents on the Internet and interact with numerous objects and
(web)services. It is most often unknown to the user which agents, objects and services are
involved. Mobility increases the risks an agent faces: agents may be hosted by a potentially
malicious agent platform, outside the control of their user and thus become more vulnerable
(e.g., Brazier et al., 2003b). The underlying problem is that other parties, such as agent
platforms, other software agents, humans, virus applications, etc., can change or copy the
code and/or data of an agent, either intentionally or accidentally. This may have far-reaching
consequences and entail large risks to users. For example, an unwanted modification of an
agent’s code and/or data may influence an agent’s behaviour significantly. Changing data
especially confidential information (e.g., bank saldo, bank accounts) or data with an economic
value may be sufficient to cause significant damage. In addition, instructions and goals of an
agent can be modified. The agent may then exhibit unwanted behaviour, for example by
buying goods for exorbitant prices, buying multiple items, engaging in malicious behaviour,
etc

In the marketplace example, a buyer agent may be modified, e.g., by a book-selling
company, by raising the buyer’s agent maximum price increasing the likeliness of the agent
purchasing one or more books. Similarly, a seller agent may be modified to provide large
discounts to specific buyer agents. Catalogues may be tampered with to display higher prices
for competitor seller agents, thereby stealing their (potential) business. More severe
consequences for the entire marketplace can, e.g., be caused by a change in the code of a
buyer agent which may cause the agent to engage in many bogus interactions to the cashier

- 11 -

service, frustrating the functioning of the marketplace for other agents by means a kind of
’denial of service’ attack.

Another issue is stealing information, including private information such as addresses,
bank accounts, credit card numbers, and an agent’s internal (strategic) aims and instructions.
This information can then be used for malicious purposes not necessarily related to the agent’s
application. For example, electronic banking information in buyer agents may be used to
acquire cash advances or goods for third parties in a different country, thereby causing
financial losses to users. Alternatively, a seller agent may make use of knowing the
instructions of a buyer agent, to predict the buyer agent’s behaviour and attempt to steer the
buyer agent in certain directions. For example, by knowing the criteria for establishing the
maximum acceptable price, the seller agent knows the ’optimal’ price to aim for.

In addition, an agent may disappear temporarily or permanently, possibly representing a
loss of investments in training and acquisition of the agent as well as frustrating the
acquisition of results from the agent. Dependent on the severity of the damages caused by a
misbehaving agent, the agent’s reputation may be jeopardised, as well as their user’s or
owner’s reputation. In addition, a user or owner may face litigation. The extent of possible
damages depends on the agent and the specifics of the context. For example, corruption of a
single agent in a swarm application (i.e. an application with large numbers relatively simple
agents used to examine emergent behaviour) may have a negligible effect. In the example
marketplace, the user of a corrupted, misbehaving, buyer agent may be banned, although the
user was not (directly) responsible for the agent’s misbehaviour. The functioning of the
marketplace is not frustrated when one user and associated buyer agents are removed.
Whether such policies are fair to users and constitute viable business practices remains to be
seen.

2.3.2 Risks when Using Agent Platforms

Using agent platforms is also not without risk. An agent platform hosts an agent: the code and
data of which validity, reliability and trustworthiness cannot be easily determined
automatically. Agents compete for an agent platform’ s resources (such as processor cycles,
bandwidth, disk space) and services (such as (reliable and secure) communication, mobility,
automated updates, streaming connections). Malicious agents may succeed in migrating to a
trustworthy system.

Code and/or data of an agent platform can be modified or stolen, by mistake or by design.
Possible consequences include modifying or stealing information on agents or conditions for
(dis)allowing access to migrating agents, or management policies, etc. An agent platform may
then exhibit unwanted behaviour, e.g. by allowing unknown agents to enter, assign or remove
resources to agents, or delete agents.

In the example marketplace, stealing information on buyer agents, as well information
about buyer agents such as their human users, characteristics, etc., can be used to corrupt the
marketplace by modifying internal data of agent platforms, e.g. causing buyer agents to
appear as seller agents, etc. In addition, stolen information can be used for other malicious
purposes, including attacking related multi-agent applications which trust the book-
marketplace or trust specific human users. By changing information in agent platforms in the
marketplace also rather different behaviour may appear. For example, specific agents may be
killed entirely, or migrated to non-trustworthy, non-affiliated systems of companies out to
gain access to the actual buyer agents and their private information.

An agent platform may also cease to function, with possible financial losses. Damages to
agents of users, as well as incorrect function of users’ applications, can be extensive and
difficult to determine. Depending on the severity of misbehaviour, the reputation of the agent

- 12 -

platform, and its users and/or owners, can be jeopardised. In addition, the user or owner may
face litigation. If the example marketplace is attacked, and causes severe mishap, subsequent
usage of the marketplace may cease, causing large (financial) damage to involved parties.

3. Agent & Agent Platform Owners Living Together Uncomfortably

The previous sections have described the key specifics of agents and agent platforms. In
summarising these risks it is clear that the key concerns relate to unwanted modification of
code and data, stealing of code and data, and interfering with functioning of agents and agent
platforms. Whether this occurs by design, by mistake during functioning of agents and agent
platforms or by malicious intent, the integrity and availability of agents and agent platforms is
at stake. Given this, section 3.1 discusses the concepts of availability and integrity with
respect to agents and agent platforms. Section 3.2 addresses relevant technical issues, and
Section 3.3 subsequently addresses relevant legal issues. Finally, section 3.4 analyses two
relevant legal cases with respect to availability and integrity of agents and agent platforms.

3.1 Availability and Integrity in Agent Systems

In computer systems in general, availability and integrity are important features. From a
technical perspective, integrity is strongly related to preventing improper alteration of a
system (and its assets), where an alteration should be detectable and recoverable, whereas
availability is strongly related to fault-tolerance and reliability (Anderson, 2001; Tanenbaum
and Steen, 2002).

In looking at it from a legal perspective, the integrity of a computer system is protected
under both criminal law and civil law. Civil ownership provides a basis to act against
infractions of integrity. Criminally, a computer system is considered as a physical object, the
damaging of which is a criminal offence if it is done intentionally and without right (see art.
350 Dutch Criminal Code). For an object to be damaged, it is sufficient that it has ceased to
function (Dutch Supreme Court 19 October 1971, NJ 1972, 33); it need not be physically
damaged. For example, erasing relevant parts of a computer’s operating system damages the
system; it may no longer function properly. Erasing a single Word-document from a
computer’s hard disk does not.

The foregoing suggests it is possible to affect the integrity of data without affecting the
integrity of the physical carrier of the data. This raises the question how the integrity of data
as such is protected in law. The integrity of data is protected separately in both criminal and
civil law. In civil law the affection of the integrity of data may constitute an unlawful act. In
criminal law the integrity of data as such is the subject of specific criminal offenses (see art.
350a and 350b Dutch Criminal Code). The Cybercrime Convention of the Council of Europe
provides an example of the statutory provision that is representative of the national legal
provisions protecting availability and integrity of data.

Article 4.1 Convention of Cybercrime (CoC) deals with data interference:

Article 4 – Data interference
1. Each Party shall adopt such legislative and other measures as may be

necessary to establish as criminal offences under its domestic law, when
committed intentionally, the damaging, deletion, deterioration, alteration
or suppression of computer data without right.

As indicated earlier, the availability and integrity of both an agent and an agent platform
are important issues in the context of this article’ s topic. Both an agent's and an agent

- 13 -

platform’s integrity need to be protected from other agents and agent platforms. The integrity
of users, owners and system administrators is not dealt with in this article. The availability of
agents and agent platforms needs to be (realistically) guaranteed.

In the marketplace example, it is obvious that the availability and integrity of the code of
agents and agent platforms is of major importance. Deficiencies in the availability and
integrity of the code of an agent or agent platform may lead to many different problems.
Messages may not be received or they may be received multiple times. Deadlines – e.g. for
accepting an offer – may not be met. Potential buyers or sellers may not be visible to other
participants in the marketplace. The list of potential problems is almost innumerable. It is also
clear that both agents and agent platforms are in this respect interdependent. The owner of an
agent may go a long way to ensure integrity of his agent, but this is to no avail if the agent
must function on an agent platform that suffers from deficiencies. The reverse also holds for
ensuring integrity of agent platforms and potentially deficient agents. Apart from the integrity
of code also integrity of data is relevant. This may regard both data as part of a message being
sent between different entities as well as information stored in databases. Since data are
directly relevant for the contents of the transactions that take place on the marketplace, it is
not difficult to envisage damages that could result from deficiencies in the integrity and
availability of data.

3.2 Technical Issues

When considering the relevant technical issues, two issues are of importance: integrity and
availability of both agents and agent platforms.

3.2.1 Availability & Integrity of Agents

An agent must be protected from unwanted alterations, caused by system malfunctions or
malicious entities, e.g. other agents or agent platforms. From a legal perspective it is desirable
that the facts can be reconstructed ‘afterwards’ , i.e. after something has happened that
influenced the availability and integrity of an agent. For this purpose, an agent may be obliged
to keep a trace of information (including orders) received from users and possibly from other
agents, together with its responses.

Fortunately, possible (counter)measures exist against integrity violations. From a technical
perspective, encryption can be used to secure information, although transportation of
encryption keys by migrating agents still poses a dilemma to researchers. Another technique
is to use secure change logs in agents: digitally signed entries in a log file containing the
signatures of all involved parties (Noordende et al., 2002). Such change logs can be used to
determine what happened to an agent; an important aspect of litigation cases.

Techniques to detect improper modifications are mainly based on tracing alterations to an
agent. A mobile agent may need to carry these traces during its life span if agent platforms ’en
route’ cannot be trusted. One technique is to use an encrypted agent container (Karnik and
Tripathi, 2001; Noordende et al., 2002) as the unit for transportation of an agent and its
associated information, as alterations are securely logged. Alternatively, an agent may
regularly visit a trusted third party for an integrity check or frequently send messages back to
its owner reporting on its status. This may ensure continuing a user’s trust in agents. Trust and
reputation play an important role for agents, with respect to both other agents (whom to buy a
book from?) and agent platforms (which will treat me fairly?). Techniques to manage trust in
large open multi-agent systems are being researched (e.g., Wong and Sycara, 1999; McKnight
and Chervany, 2001).

With respect to availability, techniques to recover from improper alterations are usually
based on restoring information from a copy (a ’backup’) at a secure location. Techniques differ

- 14 -

in their guarantees with respect to the relevance of the back-upped information (e.g., the more
recent, the better) and whether other agents may notice that a specific agent is recovering. The
agent container, mentioned before, is one means for an agent to frequently backup its data
(and code if changed). In other techniques, agents may have fault-tolerance (e.g., via backups)
built-in which may better guarantee their availability as they may recover more easily albeit at
a significantly higher cost in resource consumption (Marin et al., 2003). If no (recent) backup
is available, then information may possibly be restored by replaying past behaviour (and
consulting relevant agents and agent platforms). This may be unfeasible as vast amounts of
information may need to be shared and highly dynamic environments may prevent retrieval of
past behaviours; it also is a possible means for denial-of-service attacks.

An agent also needs protection from an agent platform. Unfortunately, an agent platform
has enormous power over an agent which cannot easily be restrained. Some solutions
advocate special purpose hardware, others have developed cryptographic techniques (e.g.
Sander and Tschudin, 1998). Protocols requiring agent platforms to provide a rationale for
their modifications to agents may also be needed. In addition, standards for protocols and
auditing logs concerning agent integrity need to be developed. Clearly in all these areas more
research is required, in particular with respect to heterogeneous large-scale open systems.

3.2.2 Availability & Integrity of Agent Platforms

To preserve the availability and integrity of an agent platform, it needs to provide
mechanisms for access control (discussed in Section 2.2.1), prevention, monitoring and
corrective action. Usually these mechanisms are provided by a system administrator. Earlier
in section 2.3.2. a number of risks for agent platforms have been identified. . Existing agent
platforms have started to address these and other security issues (including FIPA-OS, e.g.
Poslad and Calisti, 2000, and AOS (Wijngaards et al., 2002)). Below a number of such
possible measures are discussed, including examples of corrective measures.

3.2.2.1 Preventive Measures

To limit possible damages, preventive measures may be taken involving access policies and
restricting the possible actions of agents. Access policies, for agents, can be based on
reputation of owner, user and/or producer of an agent, combined with experiences from other,
trusted, agent platforms. An agent platform may assign different levels of ’trust’ to agents it
hosts. One preventive measure is to check an agent’s code for known viruses and other
malignant behaviour: a costly endeavour if possible at all. A safer approach is to have an
agent only use code which is known to be valid, by accepting or downloading the code from
known, trusted sites or parties. Another measure is to place the agent in a restricted execution
environment, known as a ’sandbox’, e.g. the Java Virtual Machine, with which unwanted code
commands can be intercepted. A third measure is, when deciding to host an agent, to impose
constraints, including permissions (read/write to specific information, execution of other
programs) and resource consumption constraints (e.g., Jansen, 2001). Information in both
agents and agent platforms, including code and data, can be protected by encryption
techniques, of which a number exist (see, e.g., (Brazier et al., 2003a) in this issue for a brief
overview). A complex aspect is whether mobile agents can safely carry their own decryption
keys, while traversing potentially malicious agent platforms.

3.2.2.2 Monitoring

To provide a reliable environment for each of its agents, an agent platform needs to monitor
itself to detect unwanted behaviour. Often, unexpected behaviour, however, is caused by
correctly functioning agents: e.g. when all buyer agents in the example marketplace access the
same catalogue congestion and overloading may occur. Monitoring resource consumption on

- 15 -

agent platforms for management purposes (Mobach et al., 2003) to limit the resources
allocated to each agent is a possible preventive measure. It is technically possible to digitally
and securely record all actions of an agent platform together with its agreements with agents,
for the purpose of furnishing proof in litigation cases. Unfortunately, this leads to extremely
large volumes of recorded data, with associated costs, problems of storage and retrieval as
well as legal questions as regards the lawfulness of keeping the data. Another source of
information is from outside entities such as system administrators, agents, trusted third
parties, and other agent platforms. This information needs to be assigned a level of trust,
before subsequent action is taken.

3.2.2.3 Corrective Measures

An agent platform requires guidelines on which automated corrective actions it can take in
which situation, as too many potential situations may emerge to involve a human system
administrator. A misbehaving system administrator’s agent may be treated differently than
someone else’s misbehaving untrusted agent. An agent platform may be required to maintain a
trace of its corrective actions possibly with a rationale, and may be required to employ a
standard protocol for notifying agents or their users on corrective actions. Possible corrective
actions include:
• slowing down an agent by allocating fewer processor-cycles,
• adjusting an agent’s permissions and resource allocations, e.g. to limit message sending to

once per large-time-unit,
• moving an agent into a sandbox (a restricted environment in which an agent’s code is

’run’),
• forcing an agent to migrate to another agent platform (possibly with the agent’s latest data,

otherwise causing the agent to revert to its last saved ’state’ based on the latest data),
• returning the agent, by stopping the agent and sending the agent (together with last saved

data) to human user(s),
• killing an agent (including deleting its identity from directory and location services),
• updating and distributing reputation and trust information with regard to this agent,
• consulting a system administrator,
• informing an agent’s owner on (appropriateness of) corrective actions taken.
The use of these, and other, corrective actions is related to a number of legal issues, of which
we address the key problems in the next section.

3.3 Legal Issues

How do the aforementioned statutory provisions with respect to availability and integrity
relate to the following question: may a system administrator remove or modify agent
processes without the consent of their owners? In analyzing the issue of removal or
modification of agent processes, two situations must be distinguished. On the one hand, as
stated earlier, it is possible that a system administrator and an owner of a software agent have
a contractual agreement detailing the specifics and conditions of the use of the platform by an
agent. In this case, their mutual relation is governed by their individual contract as well as the
general terms and conditions. We do not pursue this topic any further in this article, including
the interesting question whether software agents can considered to act as legal persona (e.g.,
Wettig and Zehendner, 2003) and thus be able to close contracts (e.g., Weitzenböck, 2001;
Brazier et al., 2003c; Cevenini, 2003; Grijpink and Prins, 2003; Schafer, 2003).

With respect to the issue of removal or modification of agent processes, the relevant
question here is whether the contract contains a provision on a possible removal or

- 16 -

modification. When such a provision is included, the parties have to act according to what has
been agreed upon.

It is, however, possible that no contractual agreement exists. In this case, the applicable
legal regime must provide the answer. As discussed above, statutory law protects the
availability and integrity of data. Data are however not processes, but it seems reasonable to
assume that processes cannot be terminated without removing or altering data and that
comparable considerations apply with respect to processes. This stance is also grounded on
the insight that a ’process’ on a computer constitutes information in memory chips and CPU’s
(central processor unit), which interpret and modify this information (involving both code,
data and execution state of a process).

From the provision of art. 4 CoC, it becomes clear that breaching the integrity of data is
only a criminal offense if it is done ’without right’. It is thus relevant to determine whether a
system administrator acts without right (or not) if he removes an agent’s process from his
platform or modifies it. On the one hand, the system administrator is the owner of his
platform, or he acts on behalf of the owner. An owner may, in general, remove or alter data
and processes that reside or run on his platform. On the other hand, the system administrator
has allowed the software agent to commence running on his platform at some point in the
past. Therewith he may or may not have raised certain expectations. Furthermore, it is the
question whether he may exercise his rights as an owner without regard for the interests of
other people, viz. the ’owner’ of an agent’s process running on his platform.

3.4 Two Relevant Cases

To illustrate the above in more detail and to identify relevant circumstances two court cases
appear relevant. Both cases, one from Dutch law and one from American law, are analyzed
below to illustrate the types of circumstances that play a role in dealing with integrity
problems of software agents. Each case is analysed from a legal and a technical perspective.
The first case, XS4all vs. ABFAB is used to introduce issues concerning the rights and
obligations of system administrators. The second case, Bidder’s Edge vs. eBay, concerns the
rights of (non-mobile) software agents. The analyses of both cases offer indications for
several concluding remarks.

3.4.1 Case 1: XS4all / ABFAB

The direct marketing company ABFAB (HR 12 maart 2004, LJN-nummer: AN8483, Zaaknr:
C02/264HR) sent commercial e-mails (spam) to the subscribers of XS4all, a famous Dutch
ISP. In order to protect its subscribers from spam sent by ABFAB and in order to protect its
system integrity, XS4all wanted to forbid ABFAB to send spam to its system. XS4all founded
its claim inter alia on its property right in its system. Basically XS4all’ s reasoning is sound.
As the proprietor of an object one can freely enjoy his or her property and fend off third
parties that interfere with ones unencumbered enjoyment of the property. There may,
however, be circumstances in which an appeal to once property right alone is not enough to
fend off others that interfere. This may, e.g., be the case with very unsubstantial interferences
with a property right or if the object is used for purposes that reflect a certain public interest
(such as an e-mail service) and the interference involves this public interest.

The question then becomes: under what circumstances can a proprietor fend off
interferers? In Dutch legal doctrine two schools of thought exist. According to the first school
a proprietor can fend off third parties if he or she can show that he or she has a good reason to
do so, justifying his actions. According to the second theory he ore she can only act if the
third party acts unlawfully towards him or her. The Dutch Supreme Court has chosen the
former theory. It is clear that this school leaves more room for ‘enforcement’ by the

- 17 -

proprietor. After all, it is for XS4all much easier to indicate that it has good reasons to fend
off spam from ABFAB (protection against spam, protection of system integrity) than is to
indicate that ABFAB acts unlawfully when it sends commercial e-mail (it is after all
questionable whether sending commercial mail is unlawful per se).

The Advocaat-Generaal (i.e. the advisor of the Hoge Raad) basically concurred. According
to the Advocaat-Generaal, an owner can fend off the use of his ore her system if he or she has
sufficiently weighty reasons to do so and his or her decision is not based on an unfair
weighing of the interests of the parties involved.

3.4.2 Case 2: Bidder’s Edge / eBay

eBay is an Internet-based, person-to-person trading site (eBay, Inc. v. Bidder’s Edge, Inc. 100
F. Supp. 2d 1058, N.D. Cal. 2000). eBay offers sellers the ability to list items for sale and
prospective buyers the ability to search those listings and bid on items. Bidder’s Edge (BE) is
an auction aggregation site designed to offer on-line auction buyers the ability to search for
items across numerous on-line auctions without having to search each auction individually.
The information that is made available on the BE site is stored in a database of information
that BE compiles through access to auction sites such as eBay.

eBay demanded that BE ceased accessing the eBay site, because BE’s queries for filling its
database compromised the capacity of eBay’s system. The Court found that BE’s access to the
site constituted a trespass to chattels. A trespass to chattels is defined by the Court as an
intentional interference with the possession of personal property has proximately caused
injury. See Thrifty-Tel v. Beznik, 46 Cal. App. 4th 1559, 1566 (1996). If this trespass consists
of accessing a computer system, the plaintiff must establish that: (1) defendant intentionally
and without authorization interfered with plaintiff’s interest as a possessor in the computer
system; and (2) that defendant’s unauthorized use proximately resulted in damage to plaintiff.
See Thrifty-Tel, 46 Cal. App. 4th at 1566; see also Itano v. Colonial Yacht Anchorage, 267
Cal. App. 2d 84, 90 (1968).

With respect to the first requirement, the Court concluded that BE’s activity is sufficiently
outside the range of the use permitted by eBay that it is unauthorized for the purposes of
establishing a trespass. Although the website is publicly accessible, eBay does not grant the
public unconditional access and does not generally permit the type of automated access made
by BE. In fact, eBay explicitly notifies automated visitors that their access is not permitted.
BE continued however to "crawl" eBay’s web site even after eBay demanded BE to terminate
this activity. The Court decided that even if BE’s web crawlers were authorized to make
individual queries of eBay’s system, BE’s web crawlers exceeded the scope of any such
consent when they begin acting like robots by making repeated queries. With respect to the
second requirement the Court held that eBay suffered damage by the mere fact that BE’s use
is appropriating eBay’s personal property by using valuable bandwidth and capacity, and
necessarily compromising eBay’s ability to use that capacity for its own purposes.

3.4.3 Conclusion

What do both cases reveal when considering issues related to integrity and availability of
agents and agent platforms? The XS4all / ABFAB case indicates that a system administrator
intending to modify an agent must first refer to his (employer’s) ownership of the system.
Apart from that he or she must balance his or her own interests against those of the agent-
owner and such balancing must not be unfair.

The BE / eBay case identifies issues in the case of a system administrator removing
unwanted agent processes. In the first place, the conditions under which the system
administrator has allowed a software agent to use his or her system are of importance. In this

- 18 -

respect, it is relevant that the software agent or its user can recognize conditions and the
nature of these conditions imposed by a system administrator. In the second place, it is
relevant to what extent the software agent uses the capacity of the system administrator’s
system. In the above case, it wasn’t necessary that alternative uses were frustrated by the fact
that BE used the system. It was sufficient that capacity was consumed that could have been
used by eBay or its customers.

Finally, the eBay/BE case shows that problems with software agents are already a reality.
In general the owner of an agent platform has some leeway in dealing with software agents.
Nonetheless the agent platform owner will always have to adduce a good reason for acting
against software agents and the balancing if his or her own interests against those of the
owner of the software agent must not be unfair. In this respect it is helpful if the agent
platform owner has communicated beforehand what the conditions are under which a
software agent may make use of the platform.

4. Adressing Future Problems

The current state of the art of both technology and law, and especially its interrelation, does
not provide for easy-to-use cookbooks detailing guidelines and standards for the development
of law-abiding agents. The worldwide deployment of (open and closed) agent systems,
however, hinges on social and commercial acceptance, which is fostered by meeting explicit
legal standards. Guidelines are needed to describe standard techniques to employ in agent
systems, and standard measures to take in specific situations. Development of guidelines is a
time-consuming endeavour, as understanding of the interplay between technological aspects
of agents and agent platforms is still developing. Important technical aspects of agents and
agent platforms, interoperability, scalability and security, are being researched, the results of
which may influence legal possibilities. On the basis of experiences with closed systems and
theory on (semi-)open systems, four recommendations are listed below.

4.1 Pre-emptively Consider Legal Risks

The analysis of the case of the system administrator wishing to remove an agent, in Sections
3.3 and 3.4.2, from his or her system clearly demonstrates the added value that can be gained
by a timely appreciation of legal aspects. It is too late when a system administrator starts to
think about what is legally possible when wanting to get rid of an agent. Much is to be gained
by considering the situation beforehand. In an earlier stage the system administrator is, for
example, in a much stronger position to impose conditions of use upon software agents and
their users, for example by means of a contractual provision. If during an earlier stage
protocols are made to request or to force an agent to migrate, then the system administrator’ s
problem seems more manageable and may even not be perceived as a ‘problem’ :
(standardised) and well-thought protocols minimise integrity and availability problems.

4.2 Explicit Agreement on Usage and Access Conditions

The conditions under which access to a computer system is granted are relevant.
Nevertheless, a number of outstanding questions with respect to these conditions remain. The
conditions for use of an agent platform must, e.g., be clearly communicated to the software
agent (and possibly its user) by the system administrator. The current practice with which
website maintainers can constrain automated access by providing a file with conditions, can
easily be ignored by external parties: an explicit agreement is not reached. A straightforward
way to enforce agreement on conditions may be a mechanism that is able to 'physically'
prohibit any use of an agent platform when the usage violates conditions. Tools and
techniques need to be developed for an agent platform to monitor usage and check for

- 19 -

violation (and agreement) of conditions.
Technical measures may have an all or nothing character: allowing either too much or too

little. In the eBay v. BE case, the former blocked at one point the latter’s IP-addresses in an
attempt to prohibit the acts that violated the conditions. This measure did not, however,
differentiate between acts in compliance or violation of the conditions. This case also
highlights a second drawback of physical measures: BE easily robbed the measure of its
effectiveness by using a proxy-server, thus hiding her IP-address and nullifying the effect of
eBay’s IP-blocking. In addition, technical measures may, on their own, make the precise
conditions for use insufficiently explicit: was e.g. BE’s access through the proxy-server
allowed since it was not blocked or must IP-blocking be understood to be a general denial of
access?

It is indispensable to have a protocol that facilitates communication of the conditions of
use much more clearly and explicitly than is the case with ’coercive technical measures’. A
distinction needs to be made with respect to the recipient of the conditions of use. If they are
to be communicated to the software agent, a protocol is required that can express that
conditions are being communicated and specify these conditions, in such a way that this is
meaningful for the software agent, e.g., by using an annotation language such as XrML
(Gelati et al., 2003). In addition, it is desirable for communication of conditions to guarantee
non-repudiation of receipt, i.e. it must be provable that the software agent has undeniably
received and understood the conditions. An appropriate protocol could, e.g., require a
software agent to acknowledge receipt of the conditions. If the conditions are to be
communicated to the owner of the software agent, the owner must be identifiable and have a
contact address. Again, a protocol is necessary, including non-repudiation of receipt.

4.3 Explicit Agreement on Rights, Obligations and Sanctions

Not only usage and access conditions needs to be specified, but also rights, obligations and
sanctions need to be explicitly agreed upon by the involved parties, which can include terms
of notification, number of warnings issued and possible normative deliberations. Both an
agent platform and a software agent have obligations to each other, e.g. to respect their
respective (private) data, accommodate fair usage, etc. Such an explicit agreement alleviates
potential (legal) problems when, e.g., a system administrator employs certain measures
affecting the performance and functioning of software agents. Especially when agent
platforms automatically act according to policies and take these agreements into account,
without involving a system administrator in every decision. A predictable agent platform may
be better trusted and valued by software agents and their human users.

In the XS4all vs. ABFAB case, a system administrator has a number of options. For a
system administrator to regulate message volume, management policies may be a used, e.g.,
to dynamically constrain resource usage, i.e. the number of messages to be send per time-unit.
A rationale may have been to grant every user the opportunity to send and receive email and
at the same time-constrain large-scale senders. Additionally, security (and access control)
policies may have been put into place whereby anti-virus and anti-spam measures temporarily
block sources of vast amounts of emails (or other messages). To stop distributed denial of
service attacks, in which multiple computers (e.g., more than 100,000) are involved in
sending messages to a target computer, a system administrator may enlist the help of other
system administrators, ISPs and network administrators, who together may stench the
message flood.

In the eBay vs. Bidder’s Edge case the agent platform could consider isolating the
suspicious Bidder’s Edge agents in such a way that is not harmful to eBay’s system, possibly
while storing enough data in order to allow the agents to resume on another system (this was

- 20 -

not an option for eBay). A more drastic option which eBay’s system administrator could
consider is killing Bidder’s Edge agents. In all situations eBay’s system administrator could
consider notifying the owner of the agents (Bidder’s Edge) of their illegal presence and their
potential termination.

Unique identities of agents facilitate notification of stakeholders. Software robots were
used to search, amongst others, eBay’s database to update the Bidder’s Edge database. eBay’s
system administrator could identify software agents such as the Bidder’s Edge robots, e.g. by
analysis of the IP-addresses from which these agents originated or their co-ordinated
behaviour. In the case of eBay, preventive measures were not of relevance, as far as can be
deduced from the case. Possible preventive measures include constraining resource usage
when an agent is accepted. In case of eBay for example, it was technically possible for
Bidder's Edge agents to extensively access eBay, far more than is ‘normally’ required by
clients.

4.4 Design for Change

As technology progresses, guidelines need to be frequently updated to reflect current state-of-
the-art technologies and measures. This is increasingly important in a world in which security
patches are frequently issued (e.g., cf. Microsoft Windows Update) and new hardware is
developed (e.g., optical computing, quantum computing). Mechanisms may need to be
developed to automatically update existing agent systems to current legal, technical and
security requirements.

4.5 Discussion

In sum, the system administrator, as the owner of a computer system, allows software agents
to use his or her agent platform. The system administrator may or may not bind the use by the
software agents to certain conditions. At a later point in time the system administrator may
want to disallow the use of his agent platform. What is he or she to do with running agent
processes? Can these processes only be prematurely removed from the agent platform with
the consent of the agent’s user or can the system administrator remove agent processes from
his or her agent platform without consent of the agent’s user or even against their will? A
preliminary analysis of case law has been performed in order to find the arguments pro and
contra interference by the system administrator. This analysis made clear that the following
circumstances are relevant:
• Has the owner of an agent platform stated conditions to the use of this system? Has a

specific software agent or its 'owner' violated these conditions? Does the absence of
conditions raise expectations about the usability of the agent platform for use by software
agents? With respect to the conditions other issues may be relevant, such as: can an agent
or its owner recognise that conditions are being imposed? Can the nature of these
conditions be recognised by the software agent or its user?

• What interest has the owner of an agent platform to disallow further use of his or her
system? Does he or she suffer damage? Is the agent platform's integrity affected? Are –
real or potential – other uses of system capacity precluded by a specific software agent?

• What is the nature and seriousness of the measures taken against a specific software
agent? Requirements of proportionality and subsidiary role – i.e. the least harmful remedy
has been chosen - decrease the system administrator's leeway.

• What is the nature of the service provided to the users of software agents? Is it a public
service? Is the service important for society, such as an e-mail service? To what extent
must the interests of the 'owner' of the agent process in its unencumbered functioning be
protected?

- 21 -

• What are consequences of the use of ’agreements’ between agent platforms and software
agents, when these agreements resemble contracts? Existing research on management of
distributed systems, including agents, includes research on leases: a simple form of such
an agreement.

For practical purposes it is of course wise to log the pertinent situations and actions in order to
(be able to) prove the facts that underpin one’s position in court.

5. Discussion

Agent technology is progressing at a fairly steady pace while potentially neglecting
reflections on legal aspects and implications on the use of software agents and agent
platforms, thereby affecting their future usability. The extent of possible damages is difficult
to predict; yet it is ’better to be safe then to be sorry’. Numerous complex legal issues need to
be resolved before agent technology can be safely, and legally, applied (e.g., Brazier et al.,
2002a). A multi-disciplinary approach is advocated, as each of the research areas of Law,
Computer Systems and Artificial Intelligence cannot research these legal issues on their own.
Agent developers need to know how to design software agents that comply with known legal
requirements (corresponding with the intended use of the agents). In addition, developers of
agent platforms (which support running or active software agents) need to know which legal
issues play a role.

For the time being, system administrators may still be confronted with the presence of
’suspicious’ agent’s processes on their systems. The technical analysis has shown that there is a
whole range of measures a system administrator can take against software agents violating
conditions for use. These measures range from reducing resources for the software agent to
removing the software agent from the system. The traditional and well-known legal criteria of
proportionality and subsidiary role imply that the least far-reaching measures that are
effective must be chosen. The question is, however, which measures meet the criterion of
being the least damaging measures that are effective. Insight in what measures are that work
in practice is still lacking. The answer to the question may be learned by experience as largely
depends on dependencies between large numbers of co-operating software agents and agent
platforms. Given the highly dynamic pace of technological development, an active
involvement of the legislature, setting legal standards by means of legislation, appears at this
moment not in order. For now, preference needs to be given to the development of norms,
protocols and other standards by market parties. This, however, requires further insight into
the specific implications and problems of software agent deployment. Thus, experiences have
to be collected and discussed. The outcome of such collection and discussion can be laid
down in self-regulatory instruments that can guide system administrators in their approach to
agent processes that go beyond the latter’s allowed use.

The legal and technical communities need to embark on interdisciplinary research to deal
with the issues addressed in this article. One option is to first analyse a complex closed-
system application to gain additional insight before analysing (semi-)open systems such as
marketplaces. A real-world application being considered is the case of using agents to support
the use of digital dossiers in court: how to demarcate dossier access (e.g., create, read, write,
modify, delete of the whole of parts) by judges, lawyers, and other parties (e.g., Oskamp and
Brazier, 2001)? The relevance of a number of aspects of software agents and agent platforms
is studied, including transaction capabilities, identity, liability, traceability, privacy, copyright,
autonomy, and legal identity. This study involves multiple perspectives, such as the user’s
perspective, a software agent’s perspective, an agent platform’s perspective, an Artificial
Intelligence perspective (e.g. regarding knowledge and capabilities), a Computer Systems
perspective (concerning security, reliability, deployment, etc.) and a Legal perspective

- 22 -

(including integrity, availability, etc.). Any interdisciplinary research encounters cultural and
language problems including ambiguity of interpretations of concepts: our aim is to engage in
discussions and eventually develop a shared framework, with explicit mappings to
frameworks used in individual disciplines (Apistola et al., 2002). Our joint research in this
challenging and rewarding domain continues.

Acknowledgements

The authors thank the anonymous reviewers for their comments, which led to a number of
improvements of the article. The ALIAS project is supported by NLnet Foundation,
http://www.nlnet.nl. The ALIAS project is an inter-disciplinary project specifically aimed at
exploring the legal status of agents and the implications of their use. The authors
acknowledge the contributions made by the participants of the ALIAS project: Martin Apistola,
Onno Kubbe, Erik Schreuders and Marten Voulon; http://www.iids.org/alias/.

References
AgentCities (2003), http://www.agentcities.org/
Anderson, R. (2001), Security Engineering: A Guide to Building Dependable Distributed Systems, Wiley

Computer Publishing, New York.
Apistola, M., Brazier, F.M.T., Kubbe, O. Oskamp, A., Schellekens, M.H.M. & Voulon, M.B. (2002), Legal

aspects of agent technology, in Proceedings of 17th Bileta conference, Amsterdam, March 2002 , 11 pages,
http://www.bileta.ac.uk/. Edinburgh, Scotland: Bileta.

Barber, K.S., McKay, R., Goel, A., Han, D., Kim, J., Liu, T.H. & Martin, C.E. (2000), Sensible agents: The
distributed architecture and testbed. IEICE Transactions on Communications, 5:951--960. IECIA/IEEE Joint
Special Issue on Autonomous Decentralized Systems, E83-B.

Bellifemine, F., Poggi, A. & Rimassa, G. (2001), Developing multi agent systems with a FIPA-compliant agent
framework, Software - Practice And Experience, 31(2):103--128.

Berners-Lee, T., Hendler, J. & Lassila, O. (2001), The Semantic Web. Scientific American, 184(5):34--43.
Biasiotti, M.A., Romano, F. & Sagri, M.-T. (2003), The Software Agent’s Liability for Harm Suffered by Third

Parties, in A. Oskamp & E. Weitzenböck (eds.), Proceedings of the Law and Electronic Agents workshop
(LEA’03), 47--56. Oslo, Norway: Norwegian Research Center for Computers and Law.

Bing, J. (2003), Copymarks: A suggestion for simple management of copyrighted material, in J. Bing & G.
Sartor (editors), The Law of Electronic Agents 2003. Legal contributions to ALFEBIITE - a logical
framework for ethical behaviour between infohabitanats in the information trading economy of the universal
information ecosystem, , 185--222. Osly, Norway: Norwegian Research Center for Computers and Law.

Bradshaw, J.M. (1997), editor. Software Agents. AAAI Press / MIT Press, Menlo Park, CA.
Brazier, F.M.T., Kubbe, O., Oskamp, A., & Wijngaards, N.J.E. (2002a), Are Law-Abiding Agents Realistic? in

Sartor, G. & Cevenini, C. (eds.), Proceedings of the workshop on the Law of Electronic Agents (LEA02),
151--155. Bologna, Italy: CIRSFID, University of Bologna.

Brazier, F.M.T., Oskamp, A., Prins, J.E.J., Schellekens, M.H.M. & Wijngaards, N.J.E. (2003a), Are anonymous
agents realistic?, in Oskamp, A. & Weitzenboeck, E. (eds.), Proceedings of the LEA 2003: The Law and
Electronic Agents, 69--79. Oslo, Norway: Norwegian Research Center for Computers and Law. See also their
contribution in this special issue of AI & Law.

Brazier, F.M.T., Oskamp, A., Schellekens, M.H.M. & Wijngaards, N.J.E. (2003b), Are Mobile Agents Outlawed
Processes? , in Oskamp, A. & Weitzenboeck, E. (eds.), Proceedings of the LEA 2003: The Law and
Electronic Agents, 127--139. Oslo, Norway: Norwegian Research Center for Computers and Law.

Brazier, F.M.T., Oskamp, A., Schellekens, M.H.M. & Wijngaards, N.J.E. (2003c), Can agents close contracts?,
in Oskamp, A. & Weitzenboeck, E. (eds.), Proceedings of the LEA 2003: The Law and Electronic Agents, 9--
20. Oslo, Norway: Norwegian Research Center for Computers and Law.

Brazier, F.M.T., Overeinder, B.J., van Steen, M., & Wijngaards, N.J.E. (2002b), Agent Factory: Generative
Migration of Mobile Agents in Heterogeneous Environments, Proceedings of the 2002 ACM Symposium on
Applied Computing (SAC 2002), 101--106. Madrid, Spain: ACM Press.

Brazier, F.M.T., van Steen, M., & Wijngaards, N.J.E. (2001), On MAS scalability. In T. Wagner & O. Rana,
(eds.), Proceedings of Second International Workshop on Infrastructure for Agents, MAS, and Scalable MAS,
121--126, Montreal, Canada.

- 23 -

Castelfranchi, C. (2001), Again on Agents? Autonomy: A Homage to Alan Turing, in C. Castelfranchi & Y.
Lespérance (eds.), Intelligent Agents VII, Lecture Notes in Artificial Intelligence 1986, 339--342. Berlin
Heidelberg: Springer-Verlag, .

Cevenini, C. (2003), Contracts for the Use of Software Agents in Virtual Enterprises, in A. Oskamp & E.
Weitzenböck (eds.), Proceedings of the Law and Electronic Agents workshop (LEA’03), 21--32. Oslo,
Norway: Norwegian Research Center for Computers and Law.

Dale, J. & Mamdani, E. (2001), Open standards for interoperating agent-based systems. Software Focus, 2(1):1--
8, Spring.

De Wilde, P., Nwana, H.S., & Lee, L.C. (1999), Stability, fairness and scalability of multiagent systems.
International Journal of Knowledge-Based Intelligent Engineering Systems, 3(2):84--91.

Ding, Y., Fensel, D., Klein, M. & Omelayenko, B. (2002), The semantic web: yet another hip?, Data and
Knowledge Engineering, 41(2-3):205--227 .

Finin, T., Labrou, Y., & Mayfield, J. (1997), KQML as an agent communication language. In J. Bradshaw, (ed.),
Software Agents, 291--316. Cambridge: MIT Press.

FIPA (2001), FIPA agent platform. http://www.fipa.org.
Fuggetta, A., Picco, G.P. & Vigna, G. (1998), Understanding code mobility. IEEE Transactions on Software

Engineering, 24(5):342--361.
Gelati, J., Rotolo, A. & Sartor, G. (2003), A Logic-based Analysis of XrML, in A. Oskamp & E. Weitzenböck

(eds.), Proceedings of the Law and Electronic Agents workshop (LEA’03), 57 -- 68. Oslo, Norway:
Norwegian Research Center for Computers and Law. See also their contribution in this special issue of AI &
Law.

Geurts R. (2002), Legal Aspects of Software Agents, in: Prins, Ribbers, Van Tilborg, Veth, Van der Wees (eds.),
Trust in Electronic Commerce. The Role of Trust from a Legal, an Organizational and a Technical Point of
View, Kluwer Law International, The Hague, Boston, 231--270.

Gray, R.S., Cybenko, G., Kotz, D., Peterson, R.A. & Rus, D. (2001). D’ Agents: Applications and performance
of a mobile-agent system. Software: Practice and Experience, 32(6):543--573.

Grijpink J. & Prins J.E.J. (2003), New Rules for Anonymous Electronic Transactions? An Exploration of the
Private Law Implications of Digital Anonymity, in: C. Nicoll, J.E.J. Prins, & M.J.M. van Dellen (eds.),
Digital Anonymity and the Law. Tensions and Dimensions, 249--270. The Hague: T.M.C. Asser Press.

Jansen, W. (2001), A Privilege Management Scheme for Mobile Agent Systems, First International Workshop
on Security of Mobile Multiagent Systems, Autonomous Agents Conference. Montreal, Canada: ACM Press.

Jennings, N.R. (2000), On agent-based software engineering, Artificial Intelligence, 117(2):277--296.
Jennings, N.R. & Wooldridge, W.J. (1998), eds. Agent Technology: Foundations, Application, and Markets.

Springer-Verlag, Berlin, Germany.
Karnik, N. & Tripathi, A. (2001), Security in the Ajanta mobile agent system. Software – Practice & Experience,

31(4):301--329.
Karnow, C.E.A. (1996), Liability for Distributed Artificial Intelligence, Berkeley Technology Law Journal,

11:161--162.
Klink, B.M.J. van & Prins, J.E.J. (2002), Law and Regulation: Scenarios for the Information Age. IOS Press

Amsterdam, Berlin, Oxford 2002
Lange, D.B., Oshima, M., Karjoth, G. & Kosaka, K. (1997), Aglets: Programming mobile agents in Java. In

Worldwide Computing and Its Applications, Lecture Notes in Computer Science 1274, 253--266. Springer-
Verlag, Berlin, Germany.

Luck, M., McBurney, P. & Preist, C. (2003), Agent Technology: Enabling Next Generation Computing.
AgentLink, ISBN 0854 327886, available from http://www.agentlink.org/roadmap/.

Marin, O., Bertier, M. & Sens, P. (2003), DARX - A Framework for the Fault-Tolerant Support of Agent
Software, In: Proceedings of the 14th. IEEE International Symposium on Software Reliability Engineering
(ISSRE 2003), 406--417. Denver, Colorado, USA: IEEE Computer Society.

Martin, D., Cheyer, A. & Moran, D. (1999), The open agent architecture: A framework for building distributed
software systems. Applied Artificial Intelligence, 13(1/2):91--128.

McKnight, D.H. & Chervany, N.L. (2001), Trust and Distrust Definitions: One Bite at a Time, in Falcone, R.,
Singh, M.P. & Tan, Y.-H., (eds.), Trust in cyber-societies : integrating the human and artificial perspectives,
Lecture Notes in Computer Science 2246, 27--54. Berlin Heidelberg: Springer.

Milojicic, D. Breugst, M., Busse, I., Campbell, J., Covaci, S., Friedman, B., Kosaka, K., Lange, D.B., Ono, K.,
Oshima, M., Tham, C., Virdhagriswaran, S. & White, J. (1998), MASIF: The OMG mobile agent system
interoperability facility. In Proceedings of the 2nd International Workshop on Mobile Agents, 1477 of
Lecture Notes in Computer Science, 50--67, Berlin, Germany. Springer-Verlag.

Mobach, D.G.A., Overeinder, B.J., Wijngaards, N.J.E. & Brazier, F.M.T. (2003), Managing Agent Life Cycles
in Open Distributed Systems, Proceedings of the 18th ACM Symposium on Applied Computing, 61--65.
Melbourne, Florida USA: ACM Press.

- 24 -

Noordende, G. van ’t, Brazier, F.M.T. & Tanenbaum, A.S. (2002), A Security Framework for a Mobile Agent
System, in K. Fischer & D. Hutter (eds.), Proceedings of the 2nd International Workshop on Security in
Mobile Multi-agent Systems (SEMAS 2002), associated with AAMAS-2002, Bologna, Italy, DFKI Research
Report RR-02-03, Deutsches Forschungszentrum fur Künstliche Intelligenz,43--50.

Nwana, H.S. (1996), Software agents: An overview. The Knowledge Engineering Review, 11(3):205--244.
Nwana, H.S., Ndumu, D.T., Lee, L.C. (1998), ZEUS: An Advanced Tool-Kit for Engineering Distributed Multi-

Agent Systems, Applied AI, 13(1-2):129--185.
Oskamp, A. & Brazier, F.M.T. (2001), Intelligent agents for lawyers, in Proceedings of the Workshop Legal

Knowledge Systems in Action: Practical AI in Today’s Law Offices, 5 pages. Saint Louis, Missouri.
Peine, H. & Stolpmann, T. (1997), The architecture of the Ara platform for mobile agents. In Proceedings of the

First International Workshop on Mobile Agents (MA’97), Lecture Notes in Computer Science 1219,50--61,
Berlin, Germany, Springer-Verlag.

Poslad, S & Calisti, M (2000), Towards Improved Trust and Security in FIPA Agent Platforms, Proceedings of
the Autonomous Agents 2000 Workshop on Deception, Fraud and Trust in Agent Societies, Barcelona,
Spain,87--90. ACM Press.

Sander, T. & Tschudin, C.F. (1998), Protecting Mobile Agents Against Malicious Hosts, in G. Vigna (ed.),
Mobile Agents and Security, Lecture Notes in Computer Science 1419, Springer-Verlag, 44--60.

Schafer, B. (2003), It’s Just not Cricket - RoboCup and Fair Dealing in Contract, in A. Oskamp and E.
Weitzenböck (eds.), Proceedings of the Law and Electronic Agents workshop (LEA’03), 33--46. Oslo,
Norway: Norwegian Research Center for Computers and Law.

Shoham, Y. (1993), Agent-oriented programming. Artificial Intelligence, 60(1):51--92.
Stuurman, K. & Wijnands, H. (2001), Intelligent Agents: A Curse or a Blessing? A Survey of the Legal Aspects

of the Application of Intelligent Software Agents, Computer Law & Security Report, 17(2):92--100.
Suri, N., Bradshaw, J.M., Breedy, M.R., Groth, P.T., Hill, G.A., Jeffers, R., Mitrovich, T.S., Pouliot, B.R., &

Smith, D.S. (2000), Nomads: Toward a strong and safe mobile agent system. In Proceedings of the Fourth
International Conference on Autonomous Agents, 163--164. Boston, Massachusetts, USA: IEEE Computer
Society.

Sycara, K., Paolucci, M., van Velsen, M., & Giampapa, J. (2003), The RETSINA MAS infrastructure.
Autonomous Agents and Multi-Agent Systems, 7(1-2):29--48.

Tanenbaum, A.S. & Van Steen, M. (2002), Distributed Systems: Principles and Paradigms, Prentice Hall, New
Jersey.

Tripathi, A., Karnik, N., Vora, M., Ahmed, T. & Singh, R. (1999), Mobile agent programming in Ajanta. In
Proceedings of the 19th International Conference on Distributed Computing Systems (ICDCS’99), 190--197.
Austin, Texas, USA: IEEE Computer Society.

Turner, P.J. & Jennings, N.R. (2000), Improving the scalability of multi-agent systems. In T. Wagner and O,
Rana (eds.), Proceedings of the First International Workshop on Infrastructure for Scalable Multi-Agent
Systems, Barcelone, Spain, 246--262.

Weitzenboeck, E.M. (2001), Electronic Agents and the Formation of Contracts, International Journal of Law
and Information Technology, 9(3):204--234.

Wettig, S. & Zehendner, E. (2003), The Electronic Agent: A Legal Personality under German Law? in A.
Oskamp & E. Weitzenböck (eds.), Proceedings of the Law and Electronic Agents workshop (LEA’03), 97 --
112. Oslo, Norway: Norwegian Research Center for Computers and Law. See also their contribution in this
special issue of AI & Law.

Wijngaards, N.J.E., Overeinder, B.J., Steen, M. van, Brazier, F.M.T. (2002), Supporting Internet-Scale Multi-
Agent Systems, Data and Knowledge Engineering, 41(2-3):229--245.

Winslett, M, Yu, T., Seamons, K.E., Hess, A., Jacobson, J. Jarvis, R., Smith, B., & Yu, L. (2002), Negotiating
Trust on the Web, IEEE Internet Computing, 6(6):30--37.

Wong, H.C. & Sycara, K. (1999), Adding Security and Trust to Multi-Agent Systems, Proceedings of
Autonomous Agents ’99 Workshop on Deception, Fraud, and Trust in Agent Societies, 149--161. Boston,
Massachusetts, USA: IEEE Computer Society

Wooldridge, M.J. & Jennings, N.R. (1995), Intelligent agents: Theory and practice. The Knowledge Engineering
Review, 10(2):115--152.

Yip, A. & Cunningham, J. (2003), Ontological Issues in Agent Ownership (Reasoning about Agent Ownership),
in A. Oskamp & E. Weitzenböck (eds.), Proceedings of the Law and Electronic Agents workshop (LEA’03),
113 -- 126. Oslo, Norway: Norwegian Research Center for Computers and Law. See also their contribution in
this special issue of AI & Law.

